

General Certificate of Education

Mathematics 6360

MPC4 Pure Core 4

Mark Scheme

2006 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

MPC4 – A	QA GCE Mark Scheme, 2006 January series		www.mymainscioud.
	Key To Mark Scheme And Al	breviation	s Used In Marking
М	mark is for method		
m or dM	mark is dependent on one or more M n	narks and is fo	
А	mark is dependent on M or m marks an		
В	mark is independent of M or m marks	and is for metl	hod and accuracy
E	mark is for explanation		
$\sqrt{100}$ or ft or F	follow through from previous		
	incorrect result	MC	mis-copy
CAO	correct answer only	MR	mis-read
CSO	correct solution only	RA	required accuracy
AWFW	anything which falls within	$\mathbf{F}\mathbf{W}$	further work
AWRT	anything which rounds to	ISW	ignore subsequent work
ACF	any correct form	FIW	from incorrect work
AG	answer given	BOD	given benefit of doubt
SC	special case	WR	work replaced by candidate
OE	or equivalent	FB	formulae book
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme
–x EE	deduct <i>x</i> marks for each error	G	graph
NMS	no method shown	С	candidate
PI	possibly implied	sf	significant figure(s)
SCA	substantially correct approach	dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

				CE Mark Scheme, 2006 January series - Nnainscloud, course of the series - Comments
			AQA GO	CE Mark Scheme, 2006 January series - 47, 74, 74, 74, 74, 74, 74, 74, 74, 74,
				athscho.
Q	Solution	Marks	Total	Comments Comments
1(a)(i)	f(1) = 0	B1	1	
(ii)	f(-2) = -24 + 8 + 14 + 2 = 0	B1	1	
(iii)	$\frac{(x-1)(x+2)}{3x^3+2x^2-7x+2} = \frac{(x-1)(x+2)}{(x-1)(x+2)(ax+b)}$	B1		Recognising $(x-1)$, $(x+2)$ as factors PI
	$ax^3 = 3x^3 \qquad -2b = 2$ $a = 3 \qquad b = -1$	B1 B1	3	a b Or Dy division M1 attempt started
				Or By division M1 attempt started M1 complete division A1 Correct answers
(b)	Use $\frac{1}{3}$	B1		
	$3\left(\frac{1}{3}\right)^3 + 2\left(\frac{1}{3}\right)^2 - 7 \times \frac{1}{3} + d = 2$	M1		Remainder Th ^M with $\pm \frac{1}{3} \pm 3$
	<i>d</i> = 4	A1F	3	Ft on $-\frac{1}{3}\left(\text{answer}-\frac{4}{9}\right)$
	Total		8	Or by division M1 M1 A1 as above
2(a)	$\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{-2}{t^2} \qquad \frac{\mathrm{d}x}{\mathrm{d}t} = -4$	M1A1		
	$\frac{dy}{dt} = \frac{-2}{t^2} \qquad \frac{dx}{dt} = -4$ $\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{1}{\frac{dx}{dt}} = \frac{1}{2t^2}$	m1 A1F	4	Use chain rule Follow on use of chain rule (if f (t)) Or eliminate $t: M1 \ y = f(x)$ attempt to
				differentiate M1A1 chain rule A1F reintroduce t
(b)	$t = 2 \qquad m_{\rm T} = \frac{1}{8}$	B1F		follow on gradient (possibly used later)
	x = -5 y = 2	B1		
	$y-2 = \frac{1}{8}(x+5)$	M1		Their $(x, y), m$
	x - 8y + 21 = 0	A1F	4	Ft on (x, y) and m
(C)	$x - 3 = -4t \qquad y - 1 = \frac{2}{t}$	M1		PI
	$t = 2 \qquad m_{\rm T} = \frac{1}{8}$ $x = -5 \qquad y = 2$ $y - 2 = \frac{1}{8}(x+5)$ x - 8y + 21 = 0 $x - 3 = -4t \qquad y - 1 = \frac{2}{t}$ $(x - 3)(y - 1) = -4t \times \frac{2}{t} = (-8)$	M1 A1	3	Attempt to eliminate <i>t</i> AG convincingly obtained
	Total		11	

V (cont				Comments
24 (cont) Q) Solution	Marks	Total	Comments
3 (a)	$R = \sqrt{13}$ Or 3.6	B1	1	
(b)	$\frac{\sin \alpha}{\cos \alpha} = \tan \alpha = \frac{2}{3} \qquad \alpha \approx 33.7$	M1A1	2	Allow M1 for tan $\alpha = \frac{-2}{3}$ or $\pm \frac{3}{2}$
				AG convincingly obtained
(c)	maximum value $=\sqrt{13}$	B1F		
	$\cos(\theta + 33.7) = 1$ $(\theta = -33.7)$	M1		
	$\theta = 326.3$	A1	3	AWRT 326
	Total		6	
4(a)	A = 80	B1	1	
(b)	$5000 = 80 \times k^{56}$	M1		SC1 Verification. Need 62.51 or better
	$k = \sqrt[56]{\frac{5000}{80}} \approx 1.07664$	M1A1	3	Or using logs: M1 $\ln\left(\frac{5000}{80}\right) = 56 \ln k$
				A1 k = $e^{\ln\left(\frac{62.5}{56}\right)}$
				Or $3/3$ for $k = 1.076636$
				Or 1.076637 seen
(c)(i)	$V = 80 \times k^{106} = 200707$	M1A1	2	200648 using full register k
(ii)	1 10000 1 11			
(11)	$\ln 10000 = \ln k^t$ $\ln 10000$	M1		
	$t = \frac{\ln 10000}{\ln k} = 124.7 \Longrightarrow 2024$	M1A1	3	$M1 t \ln k = \ln 10000$
	iii w			A1 CAO
				Or trial and improvement M1expression
				M1 125, 124, A1 2024
	Total		9	
5(a)(i)	$(1-x)^{-1} = 1 + (-1)(-x) + \frac{(-1)(-2)}{2}(-x)^{2}$ $= 1 + x + x^{2}$ $\frac{1}{(3-2x)} = \frac{1}{3} \left(1 - \frac{2}{3}x\right)^{-1}$	M1		First two terms $+kx^2$
	$= 1 + x + x^{2}$	A1	2	
			_	
	$1 - \frac{1}{1} \left(1 - \frac{2}{1} \right)^{-1}$	5.1		
(ii)	$\overline{(3-2x)} = \overline{3} \left(\frac{1-3}{3} x \right)$	B1		Or directly substitute into formula;
	$\approx * \left(1 + \frac{2}{3}x + \left(\frac{2}{3}x\right)^2 \right)$	M1		M1 power of 3 M1 other coefficients (allow one error) A1 CAO
	$\approx \frac{1}{3} + \frac{2}{9}x + \frac{4}{27}x^2$	A1	3	AG convincingly obtained
	$(1-x)^{-2} = 1 + (-2)(-x) + \frac{(-2)(-3)(-x)^2}{2}$	M1		First two terms + kx^2

MPC4 (Cont)
--------	-------

				mm. m	2
			AQA G(CE Mark Scheme, 2006 January series - Mains cloud Comments	NS P
MPC4 (C	'ont)			Sciou	8
Q	Solution	Marks	Total	Comments	.CON
5(c)			1		
	$A(1-x)^{2} + B(3-2x)(1-x) + C(3-2x)$	M1	1	Or by equating coefficients	
	$x=1$ $-1=C\times 1$ $x=\frac{3}{2}$ $\frac{3}{2}=A\times \frac{1}{4}$	M1		M1 same A1 collect terms M1 equate coefficients A1 2 correct A1 3 correct	
	C = -1 $A = 6$	A1	1	Al 3 correct Follow on A and C	
	x = 0 (-3 = 6 + 3B - 3)		1		
	or other value \Rightarrow equation in <i>A</i> , <i>B</i> , <i>C</i>	m1	1		
	B = -2	A1	5		
	3-2x $1-x$ $(1-x)$				
	$\approx \frac{6}{3} \left(1 + \frac{2}{3}x + \frac{4}{9}x^2 \right) - 2 \left(1 + x + x^2 \right)$	M1A1F		Follow on <i>A B C</i> and expansions	
	$-(1+2x+3x^2) \approx -1-\frac{8}{3}x-\frac{37}{9}x^2$	A1	3	САО	
	Total	<u>├</u>	15		-
6(a)	$\cos 2x = 2\cos^2 x - 1$	B1B1	2		1
			1		
(b)	$\cos^2 x = \frac{1}{2}(\cos 2x + 1)$	M1		Attempt to express $\cos^2 x$ in terms of $\cos 2x$	
	$\frac{1}{2}\int_{0}^{\frac{\pi}{2}}\cos 2x + 1 \mathrm{d}x = \left[\frac{1}{4}\sin 2x + \frac{x}{2}\right]_{0}^{\frac{\pi}{2}}$	A1 A1			
	$=\frac{\pi}{4}$	M1A1F	5	Use limits. Ft on integer <i>a</i> .	
	4 Total	++	7		-
7(a)(i)	$\overrightarrow{AB} = \begin{bmatrix} 6\\5\\3\\\end{bmatrix} - \begin{bmatrix} 2\\1\\3\\\end{bmatrix} = \begin{bmatrix} 4\\4\\0\\\end{bmatrix}$	M1		Penalise use of co-ordinates at first occurrence only	
		A1	2		
(ii)	י רגד רד		1		
(11)	$\begin{bmatrix} 4 \\ 4 \\ 0 \end{bmatrix} = 4 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \Rightarrow \text{parallel}$	E1	1	Needs comment "same direction" Or "same gradient" (Or by scalar product)	
(iii)	$\begin{bmatrix} 2\\-3\\-1 \end{bmatrix} = \begin{bmatrix} 6\\1\\-1 \end{bmatrix} + \lambda \begin{bmatrix} 1\\1\\0 \end{bmatrix}$	M1			
	is satisfied by $\lambda = -4$	A1	2	$\lambda = -4$ satisfies 2 equations	

b)(i) l_2 has equation $r = \begin{bmatrix} 4\\1\\1 \end{bmatrix} + \lambda \begin{bmatrix} 4\\1\\1 \end{bmatrix} - \begin{bmatrix} 2\\-3\\-1 \end{bmatrix} = \begin{bmatrix} 4\\1\\1 \end{bmatrix} + \lambda \begin{bmatrix} 2\\4\\2 \end{bmatrix}$ M1A1 2 M1A1 2 $r = \begin{bmatrix} 2\\-3\\-1 \end{bmatrix} + t \begin{bmatrix} 2\\4\\2 \end{bmatrix}$ M1 calculate and use direction vector A1 all correct (ii) $\begin{bmatrix} 1\\2\\1 \end{bmatrix} \bullet \begin{bmatrix} 4\\0\\-4 \end{bmatrix} = 4 - 4 = 0$ $\Rightarrow 90^{\circ} (\text{ or perpendicular})$ M1A1 $\frac{11}{2}$ M1A1 $\frac{11}{2}$ Clear attempt to use directions of AC and l_2 in scalar product $\frac{10}{2\sqrt{x-6}}$ M1 $\frac{10}{\sqrt{x-6}}$ M1 $\frac{10}{\sqrt{x-6}}$ Clear attempt to use directions of AC and $2\sqrt{x-6} = -2t + c$ $\frac{10}{2\sqrt{x-6}}$ M1 $\frac{10}{2\sqrt{x-6}}$ M1 $\frac{11}{2\sqrt{x-6}}$ M1 $\frac{11}{2\sqrt{x-6}}$ M1 $\frac{11}{2\sqrt{x-6}}$ $\frac{10}{2\sqrt{x-6}}$ M1 $\frac{11}{2\sqrt{x-6}}$ $\frac{10}{2\sqrt{x-6}}$ M1 $\frac{11}{2\sqrt{x-6}}$ M1 $\frac{11}{2\sqrt{x-6}}$ M1 $\frac{11}{2\sqrt{x-6}}$ M1 $\frac{11}{2\sqrt{x-6}}$ M1 $\frac{11}{2\sqrt{x-6}}$ M1 $\frac{11}{2\sqrt{x-6}}$	(cont				
$\mathbf{r} = \begin{bmatrix} 4\\1\\1 \end{bmatrix} + \lambda \begin{bmatrix} 4\\1\\1 \end{bmatrix} - \begin{bmatrix} 2\\-3\\-1 \end{bmatrix} = \begin{bmatrix} 4\\1\\1 \end{bmatrix} + \lambda \begin{bmatrix} 2\\1\\1 \end{bmatrix}$	2		Marks	Total	Comments
$\mathbf{r} = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} + \lambda \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} = \begin{bmatrix} 1\\ -3\\ -1 \end{bmatrix} = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} + \lambda \begin{bmatrix} 4\\ 2\\ 2 \end{bmatrix}$ $\mathbf{r} = \begin{bmatrix} -3\\ -1\\ -1 \end{bmatrix} + \lambda \begin{bmatrix} 4\\ 2\\ 2 \end{bmatrix}$ $\mathbf{M1 \text{ calculate and use}}$ $\mathbf{direction vector A1 all correct}$ $\mathbf{m1A1}$ $\mathbf{r} = \begin{bmatrix} -3\\ -1\\ -1 \end{bmatrix} + \lambda \begin{bmatrix} 4\\ 2\\ 2 \end{bmatrix}$ $\mathbf{M1 \text{ calculate and use}}$ $\mathbf{direction vector A1 all correct}$ $\mathbf{m1A1}$ $\mathbf{m1A1$ $\mathbf{m1A1}$ $\mathbf{m1A1}$ $\mathbf{m1A1}$ $\mathbf{m1A1$ $\mathbf{m1A1}$	(b)(i)	l_2 has equation		-	
(ii) $\begin{bmatrix} 1\\2\\1 \end{bmatrix} \cdot \begin{bmatrix} 4\\0\\-4 \end{bmatrix} = 4 - 4 = 0$ $\Rightarrow 90^{\circ}$ (or perpendicular) A1F 3 Clear attempt to use directions of AC at l_2 in scalar product Accept a correct ft value of $\cos\theta$ Total 10 8(a) $\int \frac{dx}{\sqrt{x-6}} dx = \int -2dt$ M1 Attempt to separate and integrate $2\sqrt{x-6} = -2t + c$ A1A1 c on either side $t = 0$ $x=70$ \Rightarrow $c = 16$ m1A1F Follow on c from sensible attempt at integrals $(\sqrt{not ln})$ $t = 8 - \sqrt{x-6}$ A1 6 CAO (or AEF) (b)(i) The liquid level stops falling/flowing/ at minimum depth $x = 22$ $t = 8 - \sqrt{22-6}$ M1 Use $x = 22$ in their equation provided there is a c Or start again using limits M1 $2\sqrt{64} - 2\sqrt{16} = \pm 2t$, A1 $t = 4$ CAO		$\mathbf{r} = \begin{bmatrix} 4\\1\\1 \end{bmatrix} + \lambda \begin{bmatrix} 4\\1\\1 \end{bmatrix} - \begin{bmatrix} 2\\-3\\-1 \end{bmatrix} = \begin{bmatrix} 4\\1\\1 \end{bmatrix} + \lambda \begin{bmatrix} 2\\4\\2 \end{bmatrix}$	MIAI	2	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					direction vector A1 all correct
$\Rightarrow 90^{\circ} (\text{or perpendicular}) $ $A1F 3 $ Accept a correct ft value of $\cos\theta$ $\hline \text{N} = 3 $ Accept a correct ft value of $\cos\theta$ $\hline \text{N} = 3 $ $Accept a correct ft value of \cos\theta \hline \text{N} = 3 Accept a correct ft value of cos\theta \hline \text{N} = 3 Accept a correct ft value of cos\theta \hline \text{N} = 3 Accept a correct ft value of cos\theta \hline \text{N} = 3 Accept a correct ft value of cos\theta \hline \text{N} = 3 Accept a correct ft value of cos\theta \hline \text{N} = 3 \hline \text$	(ii)	$\begin{bmatrix} 1\\2\\1 \end{bmatrix} \bullet \begin{bmatrix} 4\\0\\-4 \end{bmatrix} = 4 - 4 = 0$	M1A1		Clear attempt to use directions of AC and l_2 in scalar product
TotalTotal108(a) $\int \frac{dx}{\sqrt{x-6}} dx = \int -2dt$ M1Attempt to separate and integrate $2\sqrt{x-6} = -2t + c$ A1A1c on either side $t = 0$ $x = 70$ \Rightarrow $c = 16$ $t = 8 - \sqrt{x-6}$ A16CAO (or AEF)(b)(i)The liquid level stops falling/flowing/ at minimum depth $x = 22$ B11 $t = 4$ A12CAO			A1F	3	Accept a correct ft value of $\cos\theta$
$\int \frac{\sqrt{x-6}}{\sqrt{x-6}} dx = \int -2dt$ $\int \frac{\sqrt{x-6}}{\sqrt{x-6}} dx = \int -2dt$ $\int \frac{\sqrt{x-6}}{\sqrt{x-6}} dx = -2t + c$ $\int \frac{\sqrt{x-6}}{x-$		(/		10	
$t = 8 - \sqrt{x - 6}$ A16integrals ($\sqrt{not ln}$)(b)(i)The liquid level stops falling/flowing/ at minimum depth $x = 22$ B11M1Use $x = 22$ in their equation provided there is a c Or start again using limits M1 $2\sqrt{64} - 2\sqrt{16} = \pm 2t$, A1 $t = 4$ t = 4A12	8(a)	$\int \frac{dx}{dt} dx = \int -2dt$			
(b)(i)The liquid level stops falling/flowing/ at minimum depth $x = 22$ A16integrals ($\sqrt{not ln}$) CAO (or AEF)(b)(i)The liquid level stops falling/flowing/ at minimum depth $x = 22$ B11(b)(i)Use $x = 22$ in their equation provided there is a c Or start again using limits M1 $2\sqrt{64} - 2\sqrt{16} = \pm 2t$, A1 $t = 4$		$\int \sqrt{x-6} dx = \int -2dt$	MI		Attempt to separate and integrate
(b)(i) $t = 8 - \sqrt{x - 6}$ A16integrals ($\sqrt{not ln}$)(b)(i)The liquid level stops falling/flowing/ at minimum depth $x = 22$ B11 $t = 4$ M1Use $x = 22$ in their equation provided there is a c Or start again using limits M1 $2\sqrt{64} - 2\sqrt{16} = \pm 2t$, A1 $t = 4$		$2\sqrt{x-6} = -2t + c$	A1A1		<i>c</i> on either side
(b)(i)The liquid level stops falling/flowing/ at minimum depth $x = 22$ $t = 8 - \sqrt{22 - 6}$ B11M1Use $x = 22$ in their equation provided there is a c Or start again using limits $M1 2 \sqrt{64} - 2\sqrt{16} = \pm 2t$, A1 $t = 4$ $t = 4$ A12		$t = 0$ $x = 70$ \Rightarrow $c = 16$	m1A1F		
at minimum depth $x = 22$ M1Use $x = 22$ in their equation provided there is a c Or start again using limits M1 $2\sqrt{64} - 2\sqrt{16} = \pm 2t$, A1 $t = 4$ $t = 4$ A12		$t = 8 - \sqrt{x - 6}$	A1	6	CAO (or AEF)
$x = 22$ $t = 8 - \sqrt{22 - 6}$ M1Use $x = 22$ in their equation provided there is a c $t = 4$ A12 CAO	(b)(i)		B1	1	
t=4 A1 2 CAO			M1		there is a <i>c</i> Or start again using limits
					M1 $2\sqrt{64} - 2\sqrt{16} = \pm 2t$, A1 $t = 4$
Total 9			A1		CAO
Total 75				-	

6